

Analysis of Different Material Testing By Using Of Different Material Testing Equipment In Matlab

Shubham Sanjay Sorate, Priya Umesh Kanase

UG Student, Department of Mechanical Engineering, Tatyasaheb Kore Institute of Engineering & Technology, WaranaNagar, Kolhapur, Maharashtra, India

ABSTRACT

Whenever a purchasing any kind of engineering or construction material/metal ,Customer wanted safety or withstand able proof of this material as per their application.So that material is to be tested by standard method to confirming the material.There is different types of material Testing used in matlab in India also in world.In this paper we analyse the different type of material testing done on different particular operation for various material In matlab tested by us by using different machines like,Polyvac 2000 Spectro Chemical Testing, Positive Material Identification(PMI)Machines,Brinnel & Rockwell hardness tester, Universal Testing Machines(UTM),Impact Tester, Micro Examination Tester, & etc.

Keywords: Material Testing-Chemical Testing & Mechanical Testing.

I. INTRODUCTION

While studying about material the first question arises is that what is material testing? Why material testing is required? And How material testing carried out actually? this is all discussed below.

Material Testing is a well established technique used to determine the 'Physical' and 'Mechanical' properties of raw materials and components from a human hair to steel, composite material and ceramics. The Material Testing are required to testing material and characterization is carried out to understand the fundamental properties of material when subjected to service and environmental loading and operating conditions. Material testing helps us to understand and quantify whether a specific material is suitable to a particular application.

Example-In India, 'India Pistons Limited' is leading piston manufacturing company, and mainly manufactures the Cast aluminium Alloy Pistons. Company required huge amount of aluminium as a raw material. And this raw material is came from mine and specified dealers. But While mining process the natural aluminium contains the more impurities and content element than the required for manufacturing the cast aluminium alloy piston. So that material is purified and tested by various testing method and obtained cast aluminium is allow to manufacture the piston.

If material is not properly tested and used in a automotive, aerospace or biomedical product can be very dangerous as it has the potential of putting an end users life in danger.

Different Material Testing methods performed in matalabs in india as below:

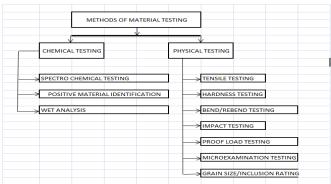


Chart 1. Method Of material Testing

Spectrochemical Testing, Inc. is an independent testing laboratory that specializes in the mechanical

testing, chemical analysis and metallurgical examination of steel, aluminum, iron and many other metal products and alloys.

Working principle-Spectrochemical analysis, methods of chemical analysis that depend upon the measurement of the wavelength and the intensity of electromagnetic radiation. Its major use is in the determination of the arrangement of atoms and electrons in molecules of chemical compounds on the basis of the amounts of energy absorbed during changes in the structure or motion of the molecules. In its restricted and more common usage two methods usually are implied:

1.Ultraviolet (non visible) and visible emission spectroscopy and

2.Ultraviolet, visible, and infrared absorption spectrophotometry.

In emission spectroscopy, atoms are excited to energy levels higher than their lowest normal levels (ground states) by means of electrical discharges (arcs, sparks) or flames. Identification of the elemental composition of an unknown substance is based on the fact that when the excited atoms return to lower energy states, they emit light of frequencies. These characteristic characteristic frequencies are separated into an ordered sequence (spectrum) by diffraction or refraction (deflection of the path of the light by a grating or a prism) for observation in a spectroscope (visual), spectrograph (photographic), or spectrometer (photoelectric). The process consists of four interdependent steps:

1. Vaporization of the sample,

2. Electronic excitation of its atoms or ions,

3. Dispersion of the emitted or absorbed radiation into its component frequencies, and

4. Measurement of the intensity of the radiation, usually at wavelengths at which the intensity is greatest.

Ordinarily, emission spectrochemical analysis is applied to the qualitative and quantitative determination of metallic elements, but it is not restricted to them. The method is among the most sensitive of all analytical methods: a few milligrams of a solid sample usually suffice for the detection of metallic elements present to the extent of a few parts per million or less. In addition, the method is capable of detecting several atomic species simultaneously, thus obviating chemical separations.

Quantitative analysis by emission spectroscopy depends upon the fact that the quantity of light (i.e.,the intensity) emitted at a given wavelength is proportional to the number of atoms vaporized and excited. The quantity of a given element is usually determined by a comparative method-that is, the intensity of the radiation emitted at a selected wavelength by the sample is compared with the intensity of the radiation emitted by a standard of known composition. Other spectrochemical methods useful in elemental analysis are atomic absorption spectrometry and atomic fluorescence spectrometry. Both methods resemble the flame method of emission spectroscopy (i.e., a method that uses flame as the energy source to excite atoms) in that a solution of the sample is usually vaporized into a flame of hydrogen or acetylene in air or oxygen. In addition, light of the same wavelength as that emitted by the desired element is passed through the flame. A certain fraction of the light is absorbed by atoms that are in their ground electronic state. The quantity of radiation absorbed proportional is to the concentration of atoms in the flame in their ground state and, because thermal equilibrium exists, to the total concentration of that atomic species.

Atomic fluorescence spectrometry makes use of the same basic instrumental components as atomic absorption spectrometry; however, it measures the intensity of the light emitted by atoms that have been excited from their ground state by the absorption of light of shorter wavelength than that emitted. The atomic absorption method is particularly well adapted to the determination of the alkali and alkaline earth metals.

II. OBJECTIVE

To Know the different types of testing is done in the material testing agency or material testing lab & analyzing the results for each material for different kind of testing.

Following are the some detailed examples are performed testing in spectrochemical laboratory by us.

The testing is classified as per sample material and customer specification

III. TESTING

A.CHEMICAL TESTING

1) FOR MILD STEEL MATERIAL (ASTM E 415:2014/IS 8811:1998)

Scope & Application-This procedure provides for Optical Emission Spectrometer Analysis of Low Alloy Steel, Plain Carbon Steel, Carbon Steel, Cast Iron Products base samples in solid form by the point to plane excitation technique for the following elements in the concentration ranges .

Sample Description-25 X 25 mm Square Block Standard Specification:- BS 970 Gr.EN 19 CHEMICAL ANALYSIS:-

Test Method :- ASTM E 415:2014/IS 8811:1998

Tuble 11 Glieffield Testing of fille steel filletille			
ELEMENTS	STANDARD	OBSERVED	
	VALUE	VALUE	
C% - Carbon	0.35-0.45	0.43	
Si%- Silicon	0.10-0.35	0.24	
Mn% -	0.50-0.80	0.75	
Manganese	0.30-0.80	0.75	
Р% -	0.050 max	0.014	
Phosphorus	0.030 IIIaX	0.014	
S% - Sulphur	0.050 max	0.020	
Cr% -	0.90-1.50	1.03	
Chromium	0.70-1.30	1.05	
Mo% -	0.20-0.40	0.21	
Molybdenum	0.20-0.40	0.21	

Remark:-Chemical Composition Conforms To BE 970 Gr.EN19 Specification as per above element analyzed.

2) FOR STAINLESS STEEL MATERIAL (ASTM E 1086:2014/IS 9879:1998)

Scope & Application- This procedure provides for Optical Emission Spectrometer Analysis of Stainless Steel product base samples in solid form by the point to plane excitation technique for the following elements in the concentration ranges

Sample Description:- 276 mm Long x 0.20 mm Thick Standard Specification:- AISI 316L CHEMICAL ANALYSIS:-Test Method :- ASTM E 1086 : 2014 / IS 9879 : 1998

ELEMENTS	STANDARD	OBSERVED
	VALUE	VALUE
C% - Carbon	0.030 max.	0.024
Si%- Silicon	0.75 max.	0.70
Mn% -Manganese	2.00 max.	0.72
P% - Phosphorus	0.045 max.	0.034
S% - Sulphur	0.030 max.	0.016
Cr% - Chromium	16.00-18.00	17.75
Mo% - Molybdenum	2.00-3.00	2.30
Ni% - Nickel	10.00-14.00	12.38

Remark:-Chemical Composition Conforms To **AISI 316L** Specification as per above element analyzed.

3) FOR **ALUMINIUM** & ITS ALLOY MATERIAL(ASTM E 1251 : 2011 / IS 11035:1984) Scope & Application- This procedure provides for Spectrometer Optical Emission Analysis of Aluminium and its alloy product base samples in solid form by the point to plane excitation technique for the following elements in the concentration ranges Sample Description- OD 32 mm ID 25.4 mm **Extension** Tube

Standard Specification:- IS 738 Gr.64430:1994 CHEMICAL ANALYSIS:-

Test Method :- ASTM E 1251 : 2011 / IS 11035:1984

 Table 3. Chemical Testing Of Aluminium Material

ELEMENTS	STANDARD	OBSERVED	
	VALUE	VALUE	
Cu% - Copper	0.10 max	0.084	
Mg% -	0.40-1.20	0.67	
Magnesium Si%- Silicon	0.60-1.30	0.88	
Fe%- Iron	0.60 max.	0.24	
Mn% - Manganese	0.40-1.00	0.44	
Zn% - Zinc	0.10 max.	0.023	
Ti% - Titanium	0.20 max.	0.015	
Cr% - Chromium	0.25 max	0.032	
Al% - Aluminium	Remainder	Remainder	

Remark:-Chemical Composition Conforms To **IS 738 Gr.64430:1994 IS** Specification as per above element analyzed.

4) FOR TOOL STEEL MATERIAL(JIS G 1253:2002)

Scope & Application- This procedure provides for Optical Emission Spectrometer Analysis of Tool Steel & High Speed Tool Steel Products base samples in solid form by the point to plane excitation technique for the following elements in the concentration ranges

Sample Description- Φ 145 mm Cut Piece. Standard Specification:- AISI M 35 CHEMICAL ANALYSIS:-

Test Method :- JIS G 1253:2002

ELEMENTS	STANDARD	OBSERVED
	VALUE	VALUE
C% - Carbon	0.87-0.95	0.92
Cr% - Chromium	3.80-4.50	4.12
Mo% - Molybdenum	4.70-5.20	5.01
V% - Vanadium	1.70-2.10	1.87
W% - Tungsten	5.90-6.70	6.07
Co% - Cobalt	4.50-5.00	4.78

Remark:-Chemical Composition Conforms To **AISI M 35** Specification as per above element analyzed.

5) FOR COPPER & ITS ALLOY MATERIAL(BS EN 15079 : 2015)

Scope & Application- This procedure provides for Optical Emission Spectrometer Analysis of Copper and its alloy product base samples in solid form by the point to plane excitation technique for the following elements in the concentration ranges

Sample Description :- 59 mm x 0.05 mm Thk.Copper Coil

Standard Specification:- IS 3331 Grade Tin Bearing Copper : 2007 , Condition – EH CHEMICAL ANALYSIS:-

Test Method . DS EN 15070 .

Test Method :- BS EN 15079 : 2015

Table 5. Chemical Testing Of Copper Material			
ELEMENTS	STANDARD	OBSERVED	
	VALUE	VALUE	
Cu%- Copper	99.50 min.	99.84	
Sn%- Tin	0.07-0.20	0.10	

P%- Phosphrous	0.015-0.045	0.025
-------------------	-------------	-------

Remark:-Chemical Composition Conforms To **BS EN 15079 : 2015** Specification as per above element analyzed.

6) FOR NICKEL & ITS ALLOY MATERIAL(OES SPECTRO)

Scope & Application- This procedure provides for Optical Emission Spectrometer Analysis of Nickel & its Alloys product base samples in solid form by the point to plane excitation technique for the following elements in the concentration ranges

Sample Description:- Φ 2 mm Inconel 600 Welding Wire

Standard Specification:- ASTM B 564 Gr.UNS No. 6600 (Inconel 600)

CHEMICAL ANALYSIS:-

Test Method :- ASTM E 3047 : 2016

Table 6.Chemical Testing Of Nickel Material

ELEMENTS	STANDARD	OBSERVED	
	VALUE	VALUE	
C% - Carbon	0.15 max.	0.045	
Si%- Silicon	0.50 max.	0.15	
Mn% -	1.00	<u>3.14</u>	
Manganese	max.	<u>5.11</u>	
S% - Sulphur	0.015 max.	<u>0.018</u>	
Cr% - Chromium	14.00- 17.00	<u>20.60</u>	
Ni% - Nickel	72.00 min.	73.80	
Cu% - Copper	0.50 max.	0.045	
Fe% - Iron	6.00- 10.00	<u>0.39</u>	

Remark:-Chemical Composition does not Conforms To **ASTM B 564 Gr.UNS No. 6600 (Incoonel 600)** Specification as per above element analyzed

7) WET ANALYSIS (IS 228 Part I -IX (1987)) Sample Description:- Bur. Standard Specification:- -CHEMICAL ANALYSIS:-Test Method :- IS 228 Part I -IX (1987)

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

ELEMENTS	STANDARD	OBSERVED	
	VALUE	VALUE	
Cu% - Copper	-	0.020	
Mg% - Magnesium	-	0.40	
Si%- Silicon	-	0.45	
Fe%- Iron	-	0.18	
Mn% - Manganese	_	0.22	
Zn% - Zinc	-	0.78	
Ti% - Titanium	_	0.012	
Cr% - Chromium	-	0.015	
Al% - Aluminium	_	Reminder	

		ODOI
Tab	le 7. Wet Analys	is.

Remark:-----

(*Note-If customer does not gives standard specification of material and material does not match any grade then and then ,we give remark as in -(dash), means there is no confirmation/match of any grade with respect to given material.)

8) SALT SPRAY (ASTM B 117)

Sample Description:- Pipe sample Standard Specification:- -CHEMICAL ANALYSIS:-Test Method :- ASTM B 117 Table 8. Salt Spray

Table 0. Salt Splay				
Test Started	:-	Tempera	:- 35°C ±	
On	23.11.2017	ture	2°C	
Test	:-	pН	:- 6.6 (6.5-	
Completion	27.11.2017		7.5)	
Date				
Salt Spray	:- 5% NaCl	RH	:- 96%	
Solution				
Duration	:- 72 Hrs.	Fog	:- 1-2	
		Collectio	ml/Hour	
		n		
		Air	:- 10-20 PSI	
		Pressure		

Table 9. Salt Spray Result

Sr.	Rem
No Date Time Hrs Observatio	ark

1	23.11.2	12.00	0	No Rust	Ok
1	017	pm	0	Observed	ŬK.
2	24.11.2	12.00	24	No Rust	Ok
2	017	pm	24	Observed	Оĸ
3	25.11.2	12.00	10	No Rust	Ok
3	017	pm	48	Observed	Оĸ
4	26.11.2	12.00	72	No Rust	Ok
4	017	pm	12	Observed	UK

Observation:- No rust observed up to 72 Hrs.

B.PHYSICAL TESTING B.MECHANICAL TESTING 1.TENSILE TESTING PURPOSE

To define a method for tensile testing of bars/plates and to calculate Yield strength , Ultimate Tensile Strength, % Elongation, % Reduction in area of steel bars/plates.

SCOPE AND APPLICATION

The procedure details method to test sample of the required metal with Tensile testing machine, record the reading and the results as per the applicable test method.

Sample Description:- 18 mm Thick.Plate.

Standard Specification:- ASTM A 240/A240M Type 316L (MSS-132) Tensile Test :-Test Method : ASTM E 8 : 2013

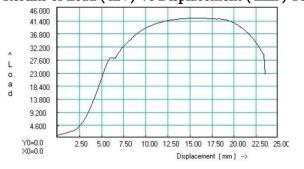

DESCRIPTION	STANDARD VALUE	OBSERVED VALUE
Specimen Shape	-	Round
Diameter (mm)	-	10.00
Area (mm ²)	_	78.257
Gauge Length (mm)	-	50.00
Yield Load (KN)	-	27.450

Table 10 Tensile Testing

Ultimate Load (KN)	-	54.25
Final Length (mm)	-	27.54
Yield Stress (N/mm ²)	170 min	351.20
UltimateTensile Strength(N/mm ²)	485 min	541
Elongation %	40 min	31.08
Fracture	-	WGL

Remark:-Chemical Composition Conforms To **ASTM A 240/A240M Type 316L (MSS-132)** Specification as per above element analyzed

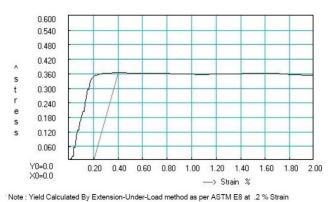

Tensile Testing Load vs Displacement Diagram:-Results of Load (kN) Vs Displacement (mm) Test :

Table 11. Observed D	Displacement.
----------------------	---------------

	1
Max.load KN	42.36
Displacement at	15.50
maximum load mm	
Max. Displacement mm	23.50
Ultimate Stress KN/mm2	0.541
Elongation	31.08
Reduction in area %	64.813

Results of Load Vs Extension Test , Graph : Stress kN/mm 2 Vs Strain %

Youngs Modulus kN/mm ²	187.953
0 .2 % Proof Load kN	28.500
0.2 % Proof Stress kN/mm ²	0.364
Yield Load KN	27.450
Yield Stress kN/mm ²	0.351
YS/UTS Ratio	0.648

Table 12.Observed Load.

2. HARDNESS TESTING 2.ROCKWELL HARDNESS:-

PURPOSE

To define a test method for determining hardness of a material through Rockwell Hardness Testing machine

SCOPE AND APPLICATION

The procedure details method to test sample of the required metal with Rockwell hardness tester machine, record the reading and the results as per the applicable test method

2.1Hardness in HRA(For Hard Material)

Test Method :- ASTM E 18 : 2014 / IS 1586 (PART I) : 2012

Hardness Type :-Rockwell

Test Force :- 60 Kgf

Table 13. Rockwell Hardness In A Reading

DESCRIPTION	STANDARED	OBSERVED
	VALUE	VALUE
Reading in HRA	55-150	79, 79, 80
	(As per customer standards)	
	standards)	

2.2 Hardness in HRB(For Soft Material)

Test Method :- ASTM E 18 : 2014 / IS 1586 (PART I) : Indentor :- 10 mm Dia Ball 2012

Hardness Type :-Rockwell

Test Force :- 100 Kgf

 Table 14.Rockwell Hardness In B Reading

DESCRIPTION	STANDARED	OBSERVED
	VALUE	VALUE
Reading in HRB	55-85	79, 79, 80
	(As per customer	
	standards)	

2.3 Hardness in HRC(For Hard Material)

Test Method :- ASTM E 18 : 2014 / IS 1586 (PART I) : 2012

Hardness Type :-Rockwell

Test Force :- 150 Kgf

Table 15.Rockwell Hardness In C Reading

DESCRIPTION	STANDARED		OBSERVED
	VALUE		VALUE
Reading in HRC	31 – 33		31, 31, 32
	(As	per	
	customer		
	standards)		

3. BRINNEL HARDNESS:-

PURPOSE

To define a test method for determining hardness of a material through Brinell Hardness Testing machine SCOPE AND APPLICATION

The procedure details method to test sample of the required metal with Optical brinell hardness tester machine, record the reading and the results as per the applicable test method

3.1 Test Method ASTM E 10 : 2014 / IS 1500 : 2013

Hardness Type :- Brinnel Test Force :- 750 Kgf Indentor :- 5 mm Dia Ball

Table 16. Brinnel hardness Testing. A.

DESCRIPTION	STANDARED VALUE		OBSERVED VALUE
Reading in HBW	- (As j customer standards)	per	144, 146, 144.

Hardness Type :- Brinnel

Test Force :-3000 Kgf

Table 17.Brinnel hardness Testing H	3
-------------------------------------	---

DESCRIPTIO	STANDARED	OBSERVED
Ν	VALUE	VALUE
Reading in	152-207 HBW	205, 207, 207
HBW	(As per	
	customer	
	standards)	

4. VICKERS HARDNESS:-Test Method :- IS 1501(Part 1) : 2013

Hardness Type :- Vickers

Test Force :- 1 Kgf

Table 18. Vickers Hardness Test.

DESCRIPTION	STANDARED	OBSERVED						
	VALUE	VALUE						
Reading in HV	146 - 302 HV	228, 232, 234						
	(As per							
	customer							
	standards)							

iv) CORE & SURFACE HARDNESS:-

As per customer specification and requirement the hardness is carried out for core and surface of the material/Sample.

CORE HARDNESS IN HRB - 77, 78, 78 SURFACE HARDNESS IN HRC - 82, 83, 82

5. IMPACT TESTING PURPOSE

To define a test method for the resistance to failure of a material to a suddenly applied force

SCOPE AND APPLICATION

This procedure covers method of impact testing (Izod and Charpy), measures the impact energy, or the energy absorbed prior to fracture.

Test Method :- IS 1757 : 1988 Reaf. 2003

Type : Charpy , Notch : 'V' Notch , Temperture : 20°C

Size : 10 x 10 x 55 mm

3.2 Test Method ASTM E 10 : 2014 / IS 1500 : 2013

Table 19.Impact Testing.

DESCRIPTION	STANDARED VALUE	OBSERVED VALUE
Energy Absorbed in Joules	-	42 J , 46 J , 44 J
Average value		44 J

6. BEND TESTING PURPOSE

To define a method of bend test and to reveal the crack defects in the sample test piece provided.

SCOPE AND APPLICATION

The test is applicable for round, square, rectangular or polygonal test pieces of metallic products.

Test Method : IS 1599 : 1985 : Re 2006

Table 20.Bend Testing.						
Width (mm)	25.00					
Thickness (mm)	4.80					
Bend Thickness	4.86					
Former Dia	(1T)					
Degree	5.00					
Observation	Satisfactory - Free From Cracks					

7. PROOF LOAD TESTING

Test method:-IS 1367 (Part 6):1994 PURPOSE

To define a method of proof load of nuts with specified proof load values.

SCOPE AND APPLICATION

The test is applicable to nuts & studs with nominal thread diameter's up to and including 39 mm made of carbon steel or low alloy steel.

Size Of Nut :- 3/4"

Load Applied :- 118.40 KN

Load Specified :- 111.38 KN

Remarks :- Thread Not Damaged

8. LIQUID PENETRATION TESTING:-PURPOSE

To define a method of Liquid penetration test and to reveal the crack defects in the sample test piece provided.

SCOPE AND APPLICATION

The test is applicable for round, square, rectangular or polygonal test pieces of metallic And non-metallic products.

This procedure describes general requirement for liquid penetrant testing of welding nonporous, ferrous&non ferrous ,non-metallic materials such as glazed ceramic, some non porous plastics, Glass, etc using color contrast solvent removable dye penetrant test method. Typical surface discontinuities detectable by this method are welding cracks,seams,laps ,cold shuts ,porosity,lamination.

I AUIC ZI.LII I COL	Table	21. Ll	PI Test
---------------------	-------	---------------	---------

LIQUID PENETRANT	TEST Date –				
REPORT	Report no-				
Clint - AMIN	Customer –				
PROPERTIES	CHINIWALAS				
BANGALORE	PRIVATE LIMITED				
Location- Pune	Name of part –				
	M.S.Bracket				
Stage of inspection - Final	Drawing no - NA				
Acceptance standards – ASTM E-165 Cl.6 Part 6					
Surface condition – cleaned	Job temperature - 35				
Penetrant Batch no-	Penetrant dwell time -				
1605R1	15 min				
Developer Batch no -	Developer dwell time -				
1606D2	10 min				
Cleaner Batch no -	Prosses time- 40 min				
1512C5					

Job Detail	s -		
1	M.S.Bracket	-	1 Nos.

Remark- All above mention material DP Done. Uniform Welding Run Observed , Weldind bead as per drawing , No Relevant indication Found . observed material Accepted.

9.POSITIVE MATERIAL IDENTIFICATION (PMI TESTING):-

PMI (Positive Material Identification) testing is the analysis of materials to determine the chemical composition of a metal or alloy at particular (usually multiple) steps of alloy manufacturing or in-process alloy installation.Knowing the exact composition and grade of an alloy enables suppliers, plant workers, and other responsible parties in the chain of custody of components to match alloy specifications that are chosen for their specific properties such as heat resistance, corrosion resistance, durability, etc. Having the right alloy in the right place is essential in places like petroleum refineries and chemical plants, because the right alloy with the right properties is often all that stands between a safe, efficient operation and lost time and revenue

SCOPE AND APPLICATION

This procedure prescribes the requirements for the positive material identification(PMI)for ferrous and non-ferrous material to verify that alloy materials are of acceptable chemical composition independent of any certificate and marking that may exist, and to assure that correct alloy materials are used at the places where intended.

Surface Preparation & Components

The surface of the component subjected to the test shall be free from grease,oil ,paint & oxides. The surface preparation shall be performed with a portable grinding machine or any other suitable equipment & the same should represent the original surface of the component.

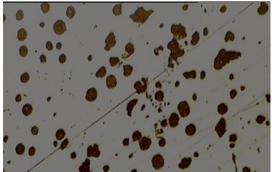
Calibration of the testing instrument

Calibration of the instrument has been carried out by the manufacturer at their factory using various types & grades of the standard reference material (SRM) for various types of materials hence no recalibration is required to be performed

One of the example of the positive material identification is carried out in site of testing location (Eg. An Manufacturing Unit, An construction Unit, An Mine Material Testing Unit)

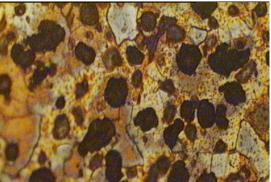
Company Name:	ABC		YOUR REF		15.03.2018	
		1	DATE OF REC	EIPT:	15.03.2018	
			LAB ID NO. :		G-849	
			TES TED DATE	200	15.03.2018	
			DATE OF REP	ORT:	27.03.2018	
PM REPORT NO	8	G-849	CLIENT:		ABC	
PURCHASE ORD	ER NO:		TESTING AGE	NCY:	RSEPECTIVEI	AB
PURCHASE REQ.	NO:		PMI LOCATIO	DN:	ABC	
MATL SPECIFIC	ATION:	SS 304	PAGE NO.		1 OF 1	
ITEM NO/ DES CI	RIPTION:		ALLOY CONT	ENT		
ELEMENTS			% Cr	% Ni	% Mn	REMARK
SPECIFIED RANG	æ:	SS 304	18.00-20.00	8.00-10.00	2.00 Max	547400000000000000
A BORL Bi		-	8 - 8			
	By - TUV SUD					
	L0 - 15 - 4610		F			
177 1" x Sch 4	0 Pipe		18.45	8.91	1.34	SS 304 Accept
178 1" Fitting			18.91	8.45	1.39	SS 304 Accept
179 1" Globe 1			18.99	8.94	1.60	SS 304 Accept
180 Line 2" - I	.0 - 15 - 46110	- BIK - NI		-1910-2		
181 2" x Sch 4	0 Pipe		18.45	8.40	1.34	SS 304 Accept
182 2" x Sch 40 - 90 Elbow			18.95	8.34	1.39	SS 304 Accept
183 2" x Sch 40 - 45 Elbow			18.90	8.34	1.60	SS 304 Accept
184 2" x 300 #			18.99	8.45	1.59	SS 304 Accept
185 J1 Weld Joint		19.55	8.91	1.65	SS 304 Accept	
186 J2 Weld J			19.36	8.34	1.30	SS 304 Accept
187 J3 Weld J			19.90	8.64	1.81	SS 304 Accept
188 J4 Weld J			19.45	8.65	1.60	SS 304 Accept
189 J5 Weld J			19.39 19.64	8.30	1.81	SS 304 Accept
190 J6 Weld J				8.45	1.85	SS 304 Accept
191 Line - 2" -		2 - BIK - NI	18.45	9.01	1.50	SS 304 Accept
192 6" x Sch 1			18.45	8.95	1.50	SS 304 Accept SS 304 Accept
193 1 ½ x Sch 194 ¾ x Sch 80			18.45	8.99	1.24	SS 304 Accept
194 54 x Sch at			18.60	8.00	1.32	SS 304 Accept
		3	18.45	8.11	1.31	SS 304 Accept
196 4" x 2 " Sch 10 Reducer 197 6" x 1 ½" Fitting		18.31	8.34	1.85	SS 304 Accept	
198 6" x 34" Fitting			18.45	8.55	1.60	SS 304 Accept
				201200		
INSTRUMENT TY	PE:			W	ITNESSED BY	
NITON- XL2 800					Mr.XYZ Sir	
Sr. NO. 87213				Of	M/s Company	
					PECTIVELAB	
					1	
				TR	H MANAGER	

10.MICRO EXAMINATION:-


Test Method : IS 7754-1975, IS 4163:2004, IS 7739 (Part IV, V)- 2003, and ASM VOL.NO.09

Scope & Application: Evaluation of Microstructure, Phase Analysis of metallic Objects.

Sample Description : Part No.Z035936 , Part Name-Slack Adjustor , SG Iron


Standard Specification: 448/12

MICRO EXAMINATION:-

Magnification :-100 X

Etchant - 3 % Nital

Magnification :-200 X

Etchant - 3 % Nital

Result & Conclusion/Observations:-

 Table 22. Etched condition /Unetched condition

Dista	0.	0.	0.	0.4	0.	0	0.	0.	0.	1.
nce	0. 1	20	о. З	0.1	5.	_	0. 70	80	90	0
(mm)	0	20	0	U	0	6	10	00	20	0
()	Ŭ		Ŭ		Ŭ	0				Ŭ
Hard	3	49	4	44	4	3	36	41	33	3
ness	7	0.	5	5.3	0	9	9.	0.	4.	7
In	5.	70	3.		0.	8	6	9	9	0.
HV	0		7		3					7
1Kgf						3				
Hard	3	48	4	44.	4	4	37	41	33	3
ness	8.	.4	5.	9	0.	0	.7	.8	.8	7
In	3		6		8					
HRC						6				8

Etched condition /Unetched condition :-

It shows predominantly ferrite matrix ASTM 6,8 with pearlite (dark regions) $10\ \%$ at grain

boundaries and graphite nodules.no carbides.

11.Grain Size Measurement:

Test Method : ASTM E 112, ASTM A 247, IS 4748 **Scope & Application:** Measurement and Evalution of Average grain Size of metallic Materials. **Sample Description :** : Φ 76.2 x 88.9 x 100 mm Hone Tube.

Standard Specification :: ST 52

Magnification :- 100X

Test Method : ASTM E 112 : 2013 Observation - ASTM 5 - 7 12.CASE DEPTH TSET:

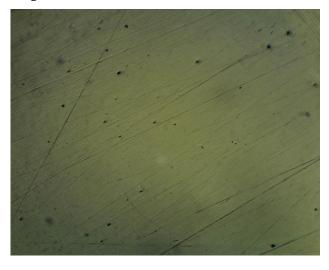
Test Method : IS 6416:1988 for Case Depth measurement,

ASTM E 384, ASTM E 92, ASTM E1077.

Scope & Application: Measurement of Case Depth by Micro Vickers / Knoop Hardness Tester.

Sample Description : :- Nut

Standard Specification ::- IS 513 Grade D : 2008 13.INCLUSION RATING:


Scope & Application :Evaluation of Inclusion Rating of different type of metallic material.

Test Method :IS 4163:2004, ASTM E 45 :2013.

Sample Description : Φ 52.80 x Φ 63.50 x 100 mm Hone Tube.

Standard Specification :ST 52

Magnification :-100X

Results & Conclusion:

Test Method : ASTM E 45 (Method A)

Table 25. Inclusion Rating							
А	В	С	D				
2.0 /	1.5 / 1.0	1.0 / 0.5	2.0 / 1.5				

Table 23. Inclusion Rating

Conclusion & result:- The results as per Scale A-D.

IV.CONCLUSION

From This we analyzed the different types of testing, Testing methods, testing technologies & Different Material Testing Machines & Different material & Different material Grades, & How actually material to be tested in laboratory is covered in this paper for various testing.

From this Paper we get information about how actually test is done for Different material testing for various material in laboratory actually.And This Is very useful for incoming future years.

IV. REFERENCES

- [1]. ASTM E 1476 Standard Guide for Metals Identification, Grade Verification, and Sorting
- [2]. ASTM E 572 Standard Test Method for Analysis of Stainless and Alloy Steels by X-ray Fluorescence Spectrometer.
- [3]. ASTM E 322 Standard Test Method for X-Ray Emission Spectrometric Analysis of Low- Alloy Steels and Cast Irons.
- [4]. IS Standard 8811 (1998) & ASTM E 415 :2017 Test method of emission spectrometric analysis of plain carbon & low alloys steels plain to plain technique.
- [5]. ASTM E 1086 :2014 ,IS- 9879 : 1998 & JIS 1253 : 2002 Test method of emission spectrometric analysis of Stainless Steels plain to plain technique.
- [6]. IS- 15338: 2003 Re-affirmed 2013 & JIS G 1253 : 2002 Test method of emission spectrometric analysis of Cast Iron , Pig Iron , S G Iron plain to plain technique.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)